-
Recherche
- Présentation
- Trimestres et mois thématiques
- Evénements scientifiques
-
Chercheurs invités
- Chercheurs invités 2021
- Chercheurs invités 2022
- Chercheurs invités 2023
-
Post-doctorants Milyon
- Post-doctorants 2022
- Post-doctorants 2023
- Publications
- Prix, honneurs, bourses de recherche
- Portraits de chercheurs
- Formation
- Médiation
- Entreprise
-
Appels à candidature
- Appels en cours
- Étudiants : Bourses d'excellence
- Doctorants : contrats doctoraux
- Post-doctorants : contrats post-doctoraux
- Chercheurs : Aide à la mobilité
- Contacts
Vous êtes ici : Version française > Présentation > Thèses
-
Partager cette page
Thèse soutenue
Publié le 14 mai 2019 | Mis à jour le 9 février 2021
Jeux concurrents enrichis : témoins pour les preuves et les ressources
Aurore Alcolei
Thèse sous la direction de : Olivier Laurent, Directeur de Recherche au CNRS, LIP, ENS de Lyon et de Glynn Winsk Discipline : Informatique
La thèse
La sémantique des jeux est une sémantique dénotationnelle centrée sur l’interaction : preuves et programmes y sont représentés par des stratégies modélisant, par le flot d’exécution, leur manière de réagir à leur environnement. Malgré cette présentation intensionnelle, les sémantiques de jeux ne suffisent pas à capturer certaines informations calculatoires annexes au flot d’exécution telles que, par exemple, la production de témoins en logique du premier ordre ou la consommation de ressources dans les langages de programmation. Dans cette thèse nous proposons un enrichissement du modèle des jeux concurrent à base de structures d’événements permettant de garder trace de ces informations.Nous construisons d’abord un modèle de jeux concurrent dans lequel les coups joueurs d’une stratégie sont annotés par les termes d’une théorie (in)équationnelle. Cette théorie est un paramètre de notre modèle et les annotations permettent de refléter de manière compacte des informations d’exécution n’ayant pas d’influence sur le flot d’exécution. Nous montrons que le modèle ainsi construit préserve la structure catégorique compacte fermée du modèle sans annotation.Nous explorons ensuite l’expressivité de notre modèle et présentons deux interprétations nouvelles en sémantique des preuves et des programmes : l’une interprétant les preuves de la logique classique du premier ordre par des stratégies concurrentes avec échange de témoins, donnant une version compositionnelle au théorème de Herbrand ; l’autre permettant de refléter les aspects quantitatifs liés à la consommation de ressources telles que le temps, dans l’exécution de programmes concurrents d’ordre supérieur avec mémoire partagée.
La sémantique des jeux est une sémantique dénotationnelle centrée sur l’interaction : preuves et programmes y sont représentés par des stratégies modélisant, par le flot d’exécution, leur manière de réagir à leur environnement. Malgré cette présentation intensionnelle, les sémantiques de jeux ne suffisent pas à capturer certaines informations calculatoires annexes au flot d’exécution telles que, par exemple, la production de témoins en logique du premier ordre ou la consommation de ressources dans les langages de programmation. Dans cette thèse nous proposons un enrichissement du modèle des jeux concurrent à base de structures d’événements permettant de garder trace de ces informations.Nous construisons d’abord un modèle de jeux concurrent dans lequel les coups joueurs d’une stratégie sont annotés par les termes d’une théorie (in)équationnelle. Cette théorie est un paramètre de notre modèle et les annotations permettent de refléter de manière compacte des informations d’exécution n’ayant pas d’influence sur le flot d’exécution. Nous montrons que le modèle ainsi construit préserve la structure catégorique compacte fermée du modèle sans annotation.Nous explorons ensuite l’expressivité de notre modèle et présentons deux interprétations nouvelles en sémantique des preuves et des programmes : l’une interprétant les preuves de la logique classique du premier ordre par des stratégies concurrentes avec échange de témoins, donnant une version compositionnelle au théorème de Herbrand ; l’autre permettant de refléter les aspects quantitatifs liés à la consommation de ressources telles que le temps, dans l’exécution de programmes concurrents d’ordre supérieur avec mémoire partagée.